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Introduction

In this lecture, we will deal with a few topics about the concept of equilibrium solution 

(Nash equilibrium):

1. Theorems of existence of Nash equilibrium (in mixed and in pure strategies)

2. Types of Nash equilibrium.

3. Nash equilibria and dominant strategy equilibria.
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Kakutani’s Fixed Point Theorem

The theorem states that under certain conditions, a set-valued function or 

correspondence (which assigns a set of possible values instead of a single value) will 

have at least one fixed point. A fixed point is a point 𝑥∗ such that:

𝑥∗ ∈ 𝐹(𝑥∗)

This means that applying 𝐹 to 𝑥∗ does not move it anywhere outside itself.

• The strategy space of players in a finite game is compact and convex (probabilities 

sum to 1 and are non-negative).

• The best-response correspondence is upper semicontinuous and has a convex 

image (mixed strategies allow weighted combinations).

Therefore, by Kakutani’s theorem, there exists a fixed point, which corresponds to a NE.
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Condition 1

𝑿 is a non-empty, compact, and convex subset of ℝ𝒏

• Non-empty: The set 𝑋 must contain at least one element.

• Compact: The set is closed (contains its boundary) and bounded (does not stretch 

infinitely).

• Convex: If you pick two points in 𝑋, the line segment between them is also in 𝑋.

Example: The unit square 𝑋 = {(𝑥, 𝑦) ∣ 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1} in ℝ2 is compact and convex.

Non-Example: 𝑋 = {(𝑥, 𝑦) ∣ 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 < 0.5, 0.5 < 𝑦 < 1} in ℝ2 is not compact 

because it does not include all boundaries, and it is not convex because it does not include 

𝑦 = 0.5.
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Condition 2a

𝑭(𝒙) is non-empty for all 𝒙 ∈ 𝑿.

• For each point 𝑥 in 𝑋, the function 𝐹 must give at least one valid output.

• This ensures that 𝐹 is well-defined and does not "break" for any 𝑥.

Example: Suppose 𝐹(𝑥) is a best-response function in a game. Every player always has 

at least one strategy to choose, so the best-response set is never empty.

Non-Example: If 𝐹(𝑥) sometimes returns an empty set, then we cannot guarantee the 

existence of a fixed point.
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Condition 2b

𝑭(𝒙) is convex for all 𝒙 ∈ 𝑿.

• If 𝑦1 ​ and 𝑦2 ​ are in 𝐹(𝑥), then any convex combination:

𝜆𝑦1 + 1 − 𝜆 𝑦1 for 0 ≤ 𝜆 ≤ 1

must also be in 𝐹(𝑥).

Example: In a game, if a player has two best-response strategies, they should also be 

able to mix between them (play a probability-weighted strategy).

Non-Example: If a certain mixed strategy is not included in the set of possible best-

response strategies.
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Condition 3

𝑭(𝒙) is upper semi-continuous.

• If you slightly change 𝑥, the values in 𝐹(𝑥) do not suddenly "jump" in a crazy way.

• Formally, if 𝑥𝑛→ 𝑥, then the corresponding sequence 𝑦𝑛 ∈ 𝐹(𝑥𝑛) must have a limit 𝑦
that is in 𝐹(𝑥).

Example: If we are choosing optimal strategies in a game, and one player makes a small 

change in their strategy, the best-response strategies of the other players should not 

suddenly jump unpredictably.

Non-Example: A function that is not upper semi-continuous could exhibit discontinuous 

jumps in best responses, making it impossible to ensure a stable equilibrium.
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Upper semicontinuous correspondence

A correspondence 𝜙 ∶ 𝑋 → 𝑌 is upper semicontinuous in 𝑥0 ∈ 𝑋, if for any sequence 

{𝑥𝑖}𝑖=1,2,… which converges to 𝑥0 and any sequence {𝑦𝑖}𝑖=1,2,… that satisfies 𝑦𝑖 ∈ 𝜙(𝑥𝑖) and 

converges to 𝑦0, it is always true that 𝑦0 ∈ 𝜙(𝑥0).

Alternative definition: A correspondence is upper semicontinuous everywhere iff its graph 

is a closed set, i.e., iff it contains its boundary points.
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Continuity of payoff function and best reply correspondence

The correspondences of mixed best replies are upper 

semicontinuous, because the expected payoff function is a 

continuous function of the mixed strategies.

The figure plots the payoff function 𝑢1(𝑥1, 𝑥2) of player 1 in 

a game with two players, where 𝑥𝑖 (𝑖 = 1, 2) are the 

strategies of the players. If these are mixed strategies, then 

𝑢1(𝑥1, 𝑥2) will be continuous as in the figure. Since the plot 

is two-dimensional, the figure takes the payoff as a function 

of 𝑥1, 𝑥2 being treated as a parameter that can take two 

arbitrarily close values ҧ𝑥2 and ҧ𝑥2
∗. The Figure shows that, if 

the payoff function is continuous, the best replies of player 

1 to ҧ𝑥2 and ҧ𝑥2
∗, 𝑥0 and 𝑥0

∗, will be arbitrarily close.
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Continuity of payoff function and best reply correspondence

By contrast, this payoff function exhibits a discontinuity, so 

that the best reply to ҧ𝑥2
∗, 𝑥0

∗, is bounded away from the initial 

best reply 𝑥0. Thus, there are points in a small neighborhood 

of 𝑥0, that are boundary points of the graph of the corres-

pondence 𝑥1 ∈ 𝜙(𝑥2) and do not belong to it. Consequently, 

the correspondence is not upper semicontinuous.

Furthermore, the image set under this kind of corres-

pondence is always convex, because, whenever two pure 

strategies are best replies to a given profile of mixed 

strategies, every convex combination of these strategies is 

also a best reply.

Then, we need a theorem of existence of fixed points of 

correspondences.
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Theorems of existence of a Nash equilibrium

Dominant Strategy Equilibrium (DSE) requires that a player's best strategy is 

independent of what the other players do. But many games do not have a dominant 

strategy for all players.

Rationalizable Strategies (RS) eliminate dominated strategies iteratively, but this 

process does not always lead to a unique or even a clear solution.

Nash Equilibrium (NE), however, always exists in games with mixed strategies (proven 

by Nash’s existence theorem).
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Mixed strategy equilibrium

Nash Theorem: In any game with a finite number of players and a finite number of pure 

strategies available to each player, the set of Nash equilibria is nonempty, i.e., Θ𝑁𝐸 = ∅.

Proof: The space of mixed strategies of the game, Θ, is a non-empty, compact and 

convex set, because it is the Cartesian product of unit simplices. As seen before, the best 

reply correspondence in mixed strategies ෨𝛽 : Θ → Θ, is upper semicontinuous. Also, the 

image set ෨𝛽(𝑥) ⊂ Θ of each profile of mixed strategies 𝑥 ∈ Θ is a non-empty, closed and 

convex set. Consequently, Θ and ෨𝛽 meet the assumptions of Kakutani’s fixed point 

theorem so that there at least a fixed point, i.e., a profile of strategies 𝑥 ∈ Θ such that 𝑥 ∈
෨𝛽(𝑥).
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Pure strategy equilibrium

Although the Nash Theorem ensures the existence of a NE in mixed strategies in all non-

cooperative games, its utility is rather limited in economics applications because most 

economists dislike mixed strategy equilibria. 

Economists tend to say that economic agents select one among competing courses of 

action (i.e., pure strategies), rather than drawing randomly a strategy from a probability 

distribution over the basic alternatives of action.
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Friedman Theorem

The following theorem by James Friedman defines sufficient conditions of existence of a 

Nash equilibrium in pure strategies, where these strategies are also continuous.

1. The number of players, 𝑛, is finite.

2. The set of pure strategies of player 𝑖, 𝑆𝑖, is a compact and convex subset of 𝑅𝑚.

3. The payoff function of player 𝑖, 𝜋𝑖(𝑠), is a scalar function that is defined for all 𝑠 =
(𝑠1, 𝑠2, … , 𝑠𝑛) ∈ ×𝑖 𝑆𝑖= 𝑆. This function is continuous and bounded.

4. The payoff function 𝜋𝑖(𝑠) is quasi-concave in relation to 𝑠𝑖 , 𝑖 = 1,2, … , 𝑛.

Quasiconcavity: A function of a real variable, 𝑓(𝑥), is quasiconcave if it is:

• either monotonic

• or it is first increasing and then decreasing (the reverse being excluded)
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Proof

The Theorem assumptions are identical to the conditions of 

the fixed point (Kakutani) Theorem. Conditions 1 and 2 

ensure that the space of pure 𝑆 =×𝑖 𝑆𝑖 is a compact and 

convex set. Condition 3 ensures that the best reply 

correspondence in pure strategies 𝛽(𝑠) with 𝑠 ∈ 𝑆 is upper 

semicontinuous. Furthermore, Condition 4 determines that 

the image set of 𝛽(𝑠) is a convex set. In the figure, the 

payoff function 𝜋𝑖(𝑠) of player 𝑖 is plotted in relation to her 

strategy 𝑠𝑖, given the profile of strategies selected by the 

other players 𝑠−𝑖. Since the payoff function is quasiconcave, 

the image set of 𝑠 under the best reply correspondence of 

player 𝑖, 𝛽𝑖(𝑠), is a singleton {𝑡𝑖}. 
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Proof ctd.

By contrast, if the payoff function 𝜋𝑖(𝑠) is not 

quasiconcave, e.g., by exhibiting two local maxima, 

the image set of the best reply correspondence is 

made by two disjoint point points {𝑡1, 𝑡2}. 
Consequently, it is not convex and the assumptions 

of the Kakutani fixed point Theorem are not met.

It should be remarked that Conditions 1-4 are 

sufficient, but they are not necessary. A continuous 

game may not meet these assumptions and 

nevertheless have a Nash equilibrium in pure 

strategies.
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Types of Nash equilibrium

Strict or Regular Nash equilibrium: a Nash equilibrium 𝑥 ∈ Θ is said to be strict or 

regular if the strategy of each player 𝑖 is a unique best reply to 𝑥, i.e., if

𝑥 = ෨𝛽 𝑥

While a Nash equilibrium requires that no unilateral strategy deviation by a player brings 

about a net gain in payoff (but there can be deviations entailing a zero payoff variation), 

in a strict equilibrium, any deviation strictly decreases the player’s payoff.

Hence, an arbitrarily small change in payoffs does not affect a strict Nash equilibrium, 

while it may do so in a non-strict equilibrium point.

Consequently, strict equilibria are usually regarded as more robust than non-strict ones.
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An example

An example of a strict Nash equilibrium is the Nash equilibrium (Betray, Betray) with 

payoffs (3,3) in Prisoner’s Dilemma game.

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝐵𝑒𝑡𝑟𝑎𝑦
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 4,4 0,5
𝐵𝑒𝑡𝑟𝑎𝑦 5,0 3,3

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝐵𝑒𝑡𝑟𝑎𝑦
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 4,4 0,5
𝐵𝑒𝑡𝑟𝑎𝑦 5,0 3, 3

Game Theory – Frieder Neunhoeffer 18



An example

However, if we change the payoff matrix to
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝐵𝑒𝑡𝑟𝑎𝑦

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 4,4 3,5
𝐵𝑒𝑡𝑟𝑎𝑦 5,0 3,3

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝐵𝑒𝑡𝑟𝑎𝑦
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 4,4 3, 5

𝐵𝑒𝑡𝑟𝑎𝑦 5,0 3, 3

a second NE (Cooperate, Betray) arises with payoffs (3,5). Then both NE are non-strict, 

since, if the column player selects "Betray", the row player has two best replies 

"Cooperate" and "Betray" with payoff 3.

A NE in mixed strategies is necessarily non-strict, because, if a mixed strategy is a best 

reply for player 𝑖 to a profile of strategies chosen by his opponents, then at least two pure 

strategies of this player are best replies either. This is the reason why most economists 

disregard a mixed strategy NE as a sound solution of a game.
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Non-dominated Nash equilibrium

A NE strategy for player 𝑖, 𝑠𝑖
∗, cannot be strictly dominated, but it can be weakly 

dominated. It is possible that there may exist another best reply, 𝑠𝑖
′, to the profile of 

strategies chosen in equilibrium by the opponents, 𝑠−𝑖
∗ , that has two properties:

• 𝑠𝑖
′ is never worse than the initial strategy 𝑠𝑖

∗ (for any 𝑠−𝑖)

• There is at least a profile 𝑠−𝑖 of strategies selected by the opponents such that 𝑠𝑖
′ is 

strictly better than 𝑠𝑖
∗.

An example of a NE dominated strategy is "Cooperate" for the Row player in the NE 

(Cooperate, Betray) in the modified Prisoner’s Dilemma
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝐵𝑒𝑡𝑟𝑎𝑦

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑒 4,4 3, 5

𝐵𝑒𝑡𝑟𝑎𝑦 5,0 3, 3

A NE 𝑥 is said to be non-dominated if none of its components 𝑥𝑖 is dominated. Clearly, in 

the modified Prisoner’s Dilemma, (Betray, Betray) is a "better“ NE than (Cooperate, 

Betray), because (Betray, Betray) is non-dominated.

Game Theory – Frieder Neunhoeffer 20



Nash equilibrium and iterated equilibrium in non strictly 

dominated strategies

The relationship between these two types of equilibrium is expressed by two propositions:

Proposition 1: In a 𝑛-person game in the normal form, if the iterated elimination of strictly 

dominated strategies eliminates all pure strategies but the profile 𝑠∗ = (𝑠1
∗, 𝑠1

∗, … , 𝑠𝑛
∗) then 

these strategies form the unique pure strategy Nash equilibrium of the game.

Proposition 2: In a 𝑛-person game in normal form, if the profile strategies 𝑠∗ = (𝑠1
∗,

𝑠1
∗, … , 𝑠𝑛

∗) make a Nash equilibrium, then they survive the elimination of strictly dominated 

strategies.
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